14.3 Echoes 421a similar procedure for Fourier transforms gives
F(g(x)h(x)) =∫∞
−∞g(x)h(x)eikxdx=
∫∞
−∞[
1
2 π∫∞
−∞̃g(k′)e−ik′x
dk′]
h(x)eikxdx=
1
2 π∫∞
−∞dk′g ̃(k′)∫∞
−∞h(x)ei(k−k′)x
dx=
1
2 π∫∞
−∞dk′g ̃(k′) ̃h(k−k′). (14.125)Thus, the Fourier-Laplace transform of Eq.(14.114) gives(p+ikv)f ̃ 2 (p,k) +ik
e
m∂f 0
∂ṽφ 2 (p,k)= −
e
m∂
∂v[∫
∞−∞dk′
2 π∫b+i∞b−i∞dp′
2 π
k′ ̃φ 1 (p′,k′)f ̃ 1 (p−p′,k−k′)]
.(14.126)
Because the convolution integrals are notationally unwieldy, to clarifythe notation we
define the new dummy variables
̄k′ = k−k′
̄p′ = p−p′ (14.127)so that Eq.(14.126) becomes
(p+ikv)f ̃ 2 (p,k) +ike
m∂f 0
∂vφ ̃ 2 (p,k)= −
e
m∂
∂v[∫
∞−∞dk′
2 π∫b+i∞b−i∞dp′
2 πk′φ ̃ 1 (p′,k′)f ̃ 1 ( ̄p′,k ̄′)]
. (14.128)
The factors in the convolution integral can be expressed in terms of the original driving
potential using Eqs.(14.120) and (14.122) to obtain
(p+ikv)f ̃ 2 (p,k) +ik
e
m∂f 0
∂vφ ̃ 2 (p,k)=∂
∂vχ(p,k,v) (14.129)where the non-linear convolution term is
χ(p,k,v) =(e
m) 2 ∫∞
−∞dk′
2 π∫b+i∞b−i∞dp′
2 π{
k′φ ̃ext(p′,k′)
D(p′,k′)×
i ̄k′
p ̄′+i ̄k′vφ ̃ext( ̄p′, ̄k′)
D( ̄p′,k ̄′)∂f 0
∂v