15.2 Manley-Rowe relations 431where it is assumed that
A ̇j
Aj
<<ωjandδ ̇j<<ωj. (15.5)Each oscillator is considered as a linear mode of the system and, from now on,the term
mode will be used interchangeably with oscillator. The energy associated with each mode
is
Wj=1
2 mPj^2 +1
2
κjQ^2 j=
m
2Q ̇^2 j+^1
2κjQ^2 j=
m
2ω^2 jA^2 j (15.6)and the associated action is
S =∮
PjdQj=m∮
Q ̇jdQj=−mωjA^2 j∫ 2 π0sinψjdcosψj= mωjA^2 j∫ 2 π0sin^2 ψjdψj=m
2ωjA^2 j (15.7)whereψj=ωjt+δj(t)is the phase of the mode.
SinceA ̈jand ̈δjare small compared toωjA ̇jandωjδ ̇jrespectively, the former terms
may be dropped when calculating the second derivative ofQjwhich is therefore
Q ̈j = −ω^2 jAjcos(ωjt+δj)− 2 ωjA ̇jsin(ωjt+δj)− 2 ωjAjδ ̇j cos(ωjt+δj).(15.8)When the above expression is inserted into Eqs.(15.3) the terms involvingω^2 jcancel and
what remains is
[
2 ωjA ̇jsin(ωjt+δj)
+2ωjAjδ ̇jcos(ωjt+δj)
]
=
λ
mAkAlcos(ωkt+δk)cos(ωlt+δl)=
λ
2 mAkAl[
cos((ωk+ωl)t+δk+δl)
+cos((ωk−ωl)t+δk−δl)]
.
(15.9)
It is necessary to write out the three coupled equations explicitly becausethe coupling
terms on the right hand side are not fully symmetric. To identify resonant interactions it is
assumed that
ω 3 = ω 1 +ω 2 (15.10)
θ(t) = δ 1 +δ 2 −δ 3 (15.11)in which case the coupled mode equations can be written
[
A ̇ 1 sin(ω 1 t+δ 1 )
+A 1 ̇δ 1 cos(ω 1 t+δ 1 )]
=
λA 2 A 3
4 mω 1
cos((ω 2 +ω 3 )t+δ 2 +δ 3 )
+cos((ω 2 −ω 3 )t+δ 2 −δ 3 )
︸ ︷︷ ︸
resonant at−ω 1
[ ̇
A 2 sin(ω 2 t+δ 2 )
+A 2 ̇δ 2 cos(ω 2 t+δ 2 )]
=
λA 1 A 3
4 mω 2
cos((ω 1 +ω 3 )t+δ 1 +δ 3 )
+cos((ω 1 −ω 3 )t+δ 1 −δ 3 )
︸ ︷︷ ︸
resonant at−ω 2
[
A ̇ 3 sin(ω 3 t+δ 3 )
+A 3 ̇δ 3 cos(ω 3 t+δ 3 )]
=
λA 1 A 2
4 mω 3
resonant at+ω 3
︷ ︸︸ ︷
cos((ω 1 +ω 2 )t+δ 1 +δ 2 )
+cos((ω 1 −ω 2 )t+δ 1 −δ 2 )