we need to look at the expected mean squares when we have a random variable that is
nested within a fixed variable. These expected mean squares are shown in Table 13.10,
where I have broken them down by fixed and random models, even though I am only dis-
cussing a nested design with one random factor here. I don’t usually include syntax for
SPSS and SAS, but nested designs cannot be run directly from menus in SPSS, so I am in-
cluding the syntax for the analysis of these data.
SPSS Code
UNIANOVA
dv BY Gender Therapist
/RANDOM 5 Therapist
/METHOD 5 SSTYPE(3)
/INTERCEPT 5 INCLUDE
/CRITERIA 5 ALPHA(.05)
/DESIGN 5 Gender Therapist(Gender).
SAS Code
data GenderTherapist;
infile C:\Documents and Settings\David Howell\
My Documents\Methods7\Chapters\Chapter13\GenderTherapist.dat ;
input Gender Therapist dv;
Proc GLM data 5 GenderTherapist;
Class Gender Therapist;
Model dv 5 Gender Therapist(Gender);
Random Therapist Therapist(Gender);
Test H 5 Gender E 5 Therapist(Gender);
run;
¿
¿
436 Chapter 13 Factorial Analysis of Variance
Table 13.9 Nested design with a random effect
SSerror=SStotal 2 SSG 2 SST(G)=2667.79 2 240.25 2 1705.24=722.30
SSTherapist(Gender)=SSTherapist(Male) 1 SSTherapist(Female)=351.52 1 1353.72=1705.24
=10(135.372)=1353.72
=10[(6.5 2 13.16)^21 (7.6 2 13.16)^21... 1 (19.3 2 13.16)^2 ]
SST(Female)=naAX.j 2 X..B^2
=10(35.152)=351.52
=10[(7.0 2 10.06)^21 (6.9 2 10.06)^21... 1 (12.0 2 10.06)^2 ]
SST(Male)=naAX.j 2 X..B^2
=240.25
= 53 4[(10.06 2 11.61)^21 (13.16 2 11.61)^2 ]
SSG=ncaAXi. 2 X..B^2
=550.775
=(9 2 11.61)^21 (8 2 11.61)^21... 1 (21 2 11.61)^2
SStotal= aAX 2 XB^2