Chapter 1
Mathematical Physics
1.1 Basic Concepts and Formulae
Vector calculus
Angle between two vectors, cosθ=|AA||.BB|
Condition for coplanarity of vectors,A.B×C= 0
Del
∇=
∂
∂x
ˆi+∂
∂y
ˆj+ ∂
∂z
kˆ
Gradient
∇φ=
(
∂φ
∂x
ˆi+∂φ
∂y
ˆj+∂φ
∂z
kˆ
)
Divergence
If V(x,y,z) = V 1 ˆi+ V 2 ˆj +V 3 kˆ, be a differentiable vector field, then
∇.V=∂∂xV 1 +∂∂yV 2 +∂∂zV 3
Laplacian
∇^2 =
∂^2
∂x^2
+
∂^2
∂y^2
+
∂^2
∂z^2
(Cartesian coordinatesx,y,z)
∇^2 =
1
r^2
∂
∂r
(
r^2
∂
∂r
)
+
1
r^2 sinθ
∂
∂θ
(
sinθ
∂
∂θ
)
+
1
r^2 sin^2 θ
∂^2
∂Φ^2
(Spherical coordinatesr,θ,Φ)
∇^2 =
∂^2
∂r^2
+
1
r
∂
∂r
+
1
r^2
∂^2
∂θ^2
+
∂^2
∂z^2
(Cylindrical coordinatesr,θ,z)
Line integrals
(a)
∫
Cφdr
1