180 3 Quantum Mechanics – II
Region 3: (x>a)V= 0
Solution:ψ 3 =Dexp(ik 1 x)
(b) Boundary conditions:
ψ 1 (0)=ψ 2 (0)→ 1 +A=B+C (1)
dψ 1
dx
∣
∣
∣
∣
x= 0
=
dψ 2
dx
∣
∣
∣
∣
x= 0
→ik 1 (1−A)=k 2 (B−C)(2)
ψ 2 (a)=ψ 3 (a)→Bexp(k 2 a)+Cexp(−k 2 a)=Dexp(ik 1 a)(3)
dψ 2
dx
∣
∣
∣
∣
x=a
=
dψ 3
dx
∣
∣
∣
∣
x=a
→k 2 (Bexp(k 2 a)−Ck 2 exp(−k 2 a))
=ik 1 Dexp(ik 1 a)
(4)
EliminateAbetween (1) and (2) to get
B(k 2 +ik 1 )−C(k 2 −ik 1 )= 2 ik 1 (5)
EliminateDbetween (3) and (4) to get
k 2 (Bexp(k 2 a)−Ck 2 exp(−k 2 a))=ik 1 (Bexp(k 2 a)+Cexp(−k 2 a)) (6)
Solve (5) and (6) to get
B=
2 ik 1 (k 2 +ik 1 )
[
(k 2 +ik 1 )^2 −exp(2k 2 a)(k 2 −ik 1 )^2
] (7)
C=
2 ik 1 (k 2 −ik 1 )e^2 k^2 a
[
(k 2 +ik 1 )^2 −e^2 k^2 a(k 2 −ik 1 )^2
] (8)
Using the values ofBandCin (3),
τ=D=
4 ik 1 k 2 exp(−ik 1 a)
(k 2 +ik 1 )^2 exp(−k 2 a)−(ik 1 −k 2 )^2 exp(k 2 a)
(9)
3.31 (a)Ftrans=τ∗τ=|D|^2 =^16
k^21 k^22
(k^21 +k^22 )^2 (e^2 k^2 a+e−^2 k^2 a)−2(k 24 − 6 k 22 k 12 +k^41 )
This expression simplifies to
Ftrans=T=
4 k 12 k^22
(k^21 +k^22 )^2 sinh^2 (k 2 a)+ 4 k^21 k^22
(10)
usek^21 = 2 mE/^2 andk^22 = 2 m(Vb−E)/^2
The reflection coefficientRis obtained by substituting (7) and (8) in (1)
to find the value ofA. After similar algebraic manipulations we find
R=|A|^2 =
(k^21 +k 22 )^2 sinh^2 (k 2 a)
(k 12 +k^22 )^2 sinh^2 (k 2 a)+ 4 k^21 k^22
(11)
Note thatR+T= 1
(b) WhenE>Vb,k 2 becomes imaginary and
sinh(k 2 a)=isin(k 2 a) (12)