184 3 Quantum Mechanics – II
Fig. 3.13
For (a) the inside and outside wave functions are as in the deuteron
Problem 3.19. For (b) the inside wave function is similar but the outside
function becomes constant (W 1 =0) and is a horizontal line.3.36 (a) Class I: Refer to Problem 3.25
ψ 1 =Aeβx(−∞<x<−a)
ψ 2 =Dcosax(−a<x<+a)
ψ 3 =Ae−βx(a<x<∞)
Normalization implies that
∫−a−∞|ψ 1 |^2 dx+∫a−a|ψ 2 |^2 dx+∫∞
a|ψ 3 |^2 dx= 1
∫−a−∞A^2 e^2 βxdx+∫a−aD^2 cos^2 αxdx+∫∞
aA^2 e−^2 βxdx= 1A^2 e−^2 βa
2 β+D^2
[
a+sin(2αa)
2 α]
+
A^2 e
− 2 βa2 β= 1
Or
A^2 e−^2 βa/β+D^2 (a+sin(2αa)/ 2 α)=1(1)
Boundary condition atx=agives
Dcosαa=ae−βa (2)
Combining (1) and (2) givesD=(
a+1
β)− 1
A=eβacosαa(
a+1
β