1000 Solved Problems in Modern Physics

(Romina) #1

186 3 Quantum Mechanics – II


H=

(


^2

2 m

)

∇^2 +a

[

x^2 +y^2 +z^2 −

5

6

x^2

]

=

(


^2

2 m

)

∇^2 +a

[

x^2
6

+y^2 +z^2

]

(2)

The Schrodinger’s equation is
Hψ(x,y,z)=Eψ(x,y,z)(3)
This equation can be solved by the method of separation of variables.
Let
ψ(x,y,z)=ψxψyψz (4)

Hψ(x,y,z)=−

^2

2 m

(

∂^2

∂x^2

+

∂^2

∂y^2

+

∂^2

∂z^2

)

ψxψyψz+a

[

x^2
6

+y^2 +z^2

]

ψxψyψz=Eψxψyψz


^2

2 m

ψyψz

∂^2 ψx
∂x^2


^2

2 m

ψxψz

∂^2 ψy
∂x^2


^2

2 m

ψxψy

∂^2 ψz
∂X^2

+

ax^2
6

ψxψyψz+ay^2 ψxψyψz+az^2 ψxψyψz=Eψxψyψz
Dividing throughout byψxψyψz


^2

2 m

1

ψx

∂^2 ψx
∂x^2


^2

2 m

1

ψy

∂^2 ψy
∂y^2


^2

2 m

1

ψz

∂^2 ψz
∂z^2

+

ax^2
6

+ay^2 +az^2 =E

(5)

^2

2 m

1

ψx

∂^2 ψx
∂x^2

+

ax^2
6

=E 1

a
6

=^1 / 2 k 1 (6)


^2

2 m

1

ψy

∂^2 ψy
∂y^2

+ay^2 =E 2 a=^1 / 2 k 2 (7)


^2

2 m

1

ψz

∂^2 ψz
∂z^2

+az^2 =E 3 a=^1 / 2 k 2 (8)

E 1 =(n 1 +^1 / 2 )ω 1 ;E 2 =(n 1 +^1 / 2 )ω 2 ;E 3 =(n 3 +^1 / 2 )ω 3

ω 1 =


k 1
m

=


a
3 m

;ω 2 =ω 3 =


2 a
m

E=E 1 +E 2 +E 3 =

(

n 1 +

1

2

)

ω 1 +(n 2 +n 3 +1)ω 2

The lowest energy level corresponds ton 1 =n 2 =n 3 =0, with

E=

ω 1
2

+ω 2 =

(√

1

12

+


2

)



√(

a
m

)

It is non-degenerate.
The next higher state is degenerate withn 1 = 1 ,n 2 = 0 ,n 3 =0;

E=

3

2




a
3 m

+


2 a
m

=

(√

3

4

+


2

)




a
m
This is also non-degenerate.
Free download pdf