200 3 Quantum Mechanics – II
3.52u 0 =
[
√α
π]
e−ξ(^2) / 2
H 0 (ξ);ξ=αx
P= 1 −
∫a−a|u 0 |^2 dx= 1 − 2∫a0(α/√
π)e−ξ(^2) / 2
dx
= 1 −
2
√
π∫aα0e−ξ2
dξE 0 =^1 / 2 ka^2 =ω
2(n=0)Thereforea^2 =kω=(
k)(k
m) 1 / 2
=√km =α^12
Thereforeα^2 a^2 =1orαa= 1
P= 1 −2
√
π∫ 1
0e−ξ^2 dξ= 1 −
2
√
π[
1 −ξ^2 +ξ^4
2!−
ξ^6
3!+
ξ^8
4!]
dξ= 1 −
2
√
π[
1 −
1
3
+
1
10
−
1
42
+
1
216
...
]
≈ 0. 16
Therefore,p≈16%Fig. 3.21Probability of the
particle found outside the
classical limits is shown
shaded
3.53The potential is of the formV(r)=−V 0 +γ
(^2) r (^2) (1)
Schrodinger’s radial equation is given by,
d^2 u
dr^2
=
[
l(l+1)
r^2+
2 μ
^2 (V(r)−E)]
u (2)Upon substituting (1) in (2), we obtain
d^2 u
dr^2+
[
2 μ
^2 (V 0 +E−γ^2 r^2 )−
l(l+1)
r^2]
u=0(3)The quantityγ^2 can be expressed in terms of the classical oscillator fre-
quencyγ^2 =μω^2
2(4)
Forr→0, (3) may be approximated to
d^2 u
dr^2−
l(l+1)u
r^2= 0
The solution of which is,
u(r)=arl+^1 +b
r
withaandbas constants.