1000 Solved Problems in Modern Physics

(Romina) #1

204 3 Quantum Mechanics – II


Classically,E=ka

2
2 =

(

n+^12

)

ω(quantum mechanically)≈nω(n→∞)
Thereforea^2 =^2 nkω=

( 2 n
k

)(k
m

) 1 / 2

=√^2 kmn =^2 αn 2

ω=


k
m
or

a=


2 n
α

(6)

Sinβ=

ξ

2 n

=

αx

2 n

=

x
a
Therefore

cosβ=

(a^2 −x^2 )

(^12)
a


(7)

Using (6) and (7) in (5)

P(x)=

exp(−ξ^2 exp(2nβ^2 ))
π(a^2 −x^2 )^1 /^2

(8)

Now whenn→∞,sinβ→βand
β→ξ/


2 n,andexp(−ξ^2 )exp(2nβ^2 )→1)
ThereforeP(x)=π√a^12 −x 2 (classical)

3.56 One can expect the probability of finding the particle of massmat distancex
from the equilibrium position to be inversely proportional to the velocity


P(x)=

A

v

(1)

whereA=normalization constant. The equation for S.H.O. is
d^2 x
dt^2

+ω^2 x= 0

which has the solution
x=asinωt;(att= 0 ,x=0)
whereais the amplitude.

v=

dx
dt



a^2 −x^2 (2)

Using (2) in (1)
P(x)=A/ω


a^2 −x^2 (3)
We can find the normalization constant∫ A.

P(x)dx=

∫a

−a

Adx
ω


a^2 −x^2

=


ω

= 1

Therefore,
A=

ω
π

(4)

Using (4) in (3), the normalized distribution is
Free download pdf