1000 Solved Problems in Modern Physics

(Romina) #1

212 3 Quantum Mechanics – II


Writing sin^2 θ= 1 −cos^2 θand simplifying we getu∗u=^29 A^23 e−^2 xx^4 which
is independent of bothθandφ. Therefore the 3dfunctions are spherically
symmetrical or isotropic.

3.71ψ 100 =


(

πa^30

)−^12

exp

(

−ar 0

)

The probabilitypof finding the electron within a sphere of radiusRis

P=

∫ R

0

|ψ 100 |^2. 4 πr^2 dr=

(

4 π
πa^30

)∫R

0

r^2 exp

(


2 r
a 0

)

dr

Set^2 ar 0 =x;dr=

(a 0
2

)

dx

P=

(

4

a 03

)

·

(

a^20
4

)

·

(a 0
2

)∫

x^2 e−xdx=^1 / 2


x^2 e−xdx

Integrating by parts

P=^1 / 2 [−x^2 e−x+ 2


xe−xdx]

=^1 / 2

[

−x^2 e−x+ 2

{

−xe−x+


e−xdx

}]

=^1 / 2

[

−x^2 e−x− 2 xe−x− 2 e−x

] 2 R/a 0
0

=^1 / 2

[


(

2 R

a 0

) 2

exp

(


2 R

a 0

)

− 2

(

2 R

a 0

)

exp

(


2 R

a 0

)

−2exp

(


2 R

a 0

)

+ 2

]

P= 1 −e−

(^2) aR
0


(

1 +

2 R

a 0

+

2 R^2

a^20

)

3.72 The hydrogen wave function forn=2 orbit is


ψ 200 =

(

1

4

)

(

2 πa 03

)−^12

(

2 −

r
a 0

)

e−r/^2 a^0

The probability of finding the electron at a distancerfrom the nucleus

P=|ψ 200 |^2 · 4 πr^2 =

1

8

r^2
a^30

(

2 −

r
a 0

) 2

exp

(


r
a 0

)

Maxima are obtained from the condition dp/dr=0.
The maxima occur atr=(3−


3)a 0 andr=(3+


3)a 0 while minimum
occur atr= 0 , 2 a 0 and∞(Fig. 3.25) (the minima are found from the condi-
tionp=0).

3.73 (a)hν= 13. 6 Z^2


(


me

)(

1
22 −

1
32

)

Putmμ=106 MeV (instead of 106.7 MeV for muon)
Z=15 andme= 0 .511 MeV
Free download pdf