1000 Solved Problems in Modern Physics

(Romina) #1

222 3 Quantum Mechanics – II


Clearly the statesψ

( 3

2 ,

3
2

)

andψ

( 3

2 ,−

3
2

)

can be formed in only one way

ψ

(

3

2

,

3

2

)

=φ(1,1)φ

(

1

2

,

1

2

)

(1)

ψ

(

3

2

,−

3

2

)

=φ(1,−1)φ

(

1

2

,−

1

2

)

(2)

We now use the ladder operatorsJ+andJ−to generate the second and the
third states.
J+φ(j,m)=[(j−m)(j+m+1)]

(^12)
φ(j,m+1) (3)
J−φ(j,m)=[(j+m)(j−m+1)]
(^12)
φ(j,m−1) (4)
Applying (4) to (1) on both sides
J−ψ


(

3

2

,

3

2

)

=

[(

3

2

+

3

2

)(

3

2


3

2

+ 1

)] 1 / 2

=


3 ψ

(

3

2

,

1

2

)

=J−φ(1,1)φ

(

1

2

,

1

2

)

=φ(1,1)J−

(

1

2

,

1

2

)


(

1

2

,

1

2

)

J−φ(1,1)

=φ(1,1)φ

(

1

2

,−

1

2

)


(

1

2

,

1

2

)√

2 φ(1,0)

Thusψ

(

3

2

,

1

2

)

=


2

3

φ(1,0)φ

(

1

2

,

1

2

)

+


1

3

φ(1,1)φ

(

1

2

,−

1

2

)

(5)

Similarly, applyingJ+operator given by (3) to the stateψ

( 3

2 ,−

3
2

)

we
obtain

ψ

(

3

2

,−

1

2

)

=


2

3

φ(1,0)φ

(

1

2

,−

1

2

)

+


1

3

φ(1,−1)φ

(

1

2

,

1

2

)

(6)

TheJ= 1 /2 state can be obtained by making it as a linear combination

ψ

(

1

2

,

1

2

)

=aφ(1,1)φ

(

1

2

,−

1

2

)

+bφ(1,0)φ

(

1

2

,

1

2

)

(7)

For normalization reason,
a^2 +b^2 =1(8)
We can obtain one other relation by making (7) orthogonal to (5)

a


1

3

+b


2

3

= 0

Ora=−


2 b (9)
Same result is obtained by applyingJ+operator to (7).J+ψ(1/ 2 , 1 /2)= 0

Solving (8) and (9),=


2

3

,b=−


1

3

(10)
Free download pdf