264 4 Thermodynamics and Statistical Physics
P−=
dAdt
2 λ
∫∞
0
νdn
∫∞
0
e−r/λdr
∫π/ 2
0
sinθcosθ
(
mu+rcosθ
dmu
dz
)
dθ
The factore−r/λis included to ensure that the molecule in traversing the
distancertoward dAdoes not get scattered and prevented from reaching dA.
Similarly, transport of momentum upward, from molecules in the lower
hemisphere through dAin time dtis
P+=
dAdt
2 λ
∫∞
0
νdn
∫∞
0
e−r/λdr
∫π/ 2
0
sinθcosθ
(
mu−rcosθ
dmu
dz
)
dθ
Hence net momentum transfer to the reference plane through an area dAin
time dtis
P=P−−P+=
dAdt
λ
mdu
dz
∫∞
0
νdn
∫∞
0
re−r/λdr
∫π/ 2
0
cos^2 θsinθdθ
=
dAdt
λ
m
du
dz
n<ν>
λ^2
3
=
m
3
dAdt
du
dz
λn<ν>
(the first integral givesn<ν>, the second oneλ^2 and the third one a factor
1/3)
Momentum transported per second is force
F=
λ
3
dAn<ν>m
du
dz
The viscous force is
ηdA
du
dz
=
λ
3
dAn<ν>m
du
dz
or η=
1
3
mn<ν>λ=
1
3
ρ<ν>λ
wheremn=ρ=density of molecules.
4.16λ=
1
√
2 πnσ^2
=
1
√
2 π× 3 × 1025 ×(2. 5 × 10 −^10 )^2
= 1. 2 × 10 −^7 m
f=
ν
λ
=
1 , 000
1. 2 × 10 −^7
= 8. 33 × 109 s−^1
4.17 T 1 V 1 γ−^1 =T 2 V 2 γ−^1 ,
(
V 2
V 1
)γ− 1
=
T 1
T 2
or 2γ−^1 = 1. 32 ,γ= 1. 4
Number of degrees of freedom,
f=
2
γ− 1