42 1 Mathematical Physics
1.21 Consider the Fourier integral theorem
f(x)=2
π∫∞
0cosaxda∫∞
0e−ucosauduPutf(x)=e−x. Now the definite integral
∫∞0e−bucos(au)du=b
b^2 +a^2Here∫∞
0e−ucosaudu=1
1 +a^2∴2
π∫∞
0cosax
1 +a^2dx=f(x)or∫∞
0cosax
1 +a^2=
π
2e−x1.22 The Gaussian distribution is centered ont =0 and has root mean square
deviationτ.
̃f(ω)=√^1
2 π
∫∞
−∞f(t)e−iωtdt=
1
√
2 π∫∞
−∞1
τ√
2 πe−t(^2) / 2 τ 2
e−iωtdt
=
1
√
2 π∫∞
−∞1
τ√
2 πe−[t(^2) + 2 τ (^2) iωt+(τ (^2) iω) (^2) −(τ (^2) iω) (^2) ]/ 2 τ 2
dt
=
1
√
2 πe−τ^22 ω^2{
1
τ√
2 π∫∞
−∞e−(t+iτ^2 ω^2 )^2
2 τ^2 dt}
The expression in the Curl bracket is equal to 1 as it is the integral for a
normalized Gaussian distribution.
∴ ̃f(ω)=1
√
2 πe−τ^2 ω^2
2which is another Gaussian distribution centered on zero and with a root mean
square deviation 1/τ.1.3.3 Gamma and Beta Functions
1.23Γ(z+1)=limT→∞
∫T
0 e−xxzdxIntegrating by partsΓ(z+1)= lim
T→∞
[−xze−x|T 0 +z∫T
0e−xxz−^1 dx]=zlimT→∞∫T
0e−xxz−^1 dx=zΓ(z)becauseTze−T→0asT→∞
Also, sinceΓ(1)=∫∞
0 e−xdx= 1
Ifzis a positive integern,
Γ(n+1)=n!