Optimal stopping
αT = E(ξT)
αn = αn+ 1 ( 1 F(αn+ 1 ))+Zαn+ 1
0xdF(x)If(ξn)is uniform on[ 0 , 1 ], thenαT =1
2
αn = αn+ 1 ( 1 αn+ 1 )+α^2 n+ 1
2=αn+ 1 α^2 n+ 1
2αT = E(ξT)
αn = αn+ 1 ( 1 F(αn+ 1 ))+Zαn+ 1
0xdF(x)If(ξn)is uniform on[ 0 , 1 ], thenαT =αn = αn+ 1 ( 1 αn+ 1 )+α^2 n+ 1
2=αn+ 1 α^2 n+ 1
2