Liquidity modelling
There is a demandDfor liquid resources, cash or euro in a bank or in a
teller machine, with distribution functionF.There are two costs:his the
holding cost andpis the penalty for not satisfying the demand. What is
the level of optimal supplyS?Our goal function isJ(S)=hE(S D)+
+pE(D S)+
.
If there is a density function thenE(D S)+
=
ZāS(x S)f(x)dxE
(S D)+
=
Z
R(S x)+dF(x)=Z
R(S x)+f(x)dx==ZS
0(S x)f(x)dx.