Calculus of variations
Example
Solve the problem
Z 1
0tx+x2
dt!min,x( 0 )= 1.The EulerñLagrange is0 =Fx^0 = d
dtFx^0 = d
dtt+ 2 x= 1 + 2 x.C=t+ 2 x, x( 0 )= 1x=C
2 t
2 , x(^0 )=^1
x(t) 1 =C
2 t t^2
4.
x(t)= t^2
4 +C
2 t+^1 Solve the problem
Z 1
0tx+xdt!min,x( 0 )= 1.The EulerñLagrange is0 =Fx^0 = d
dtFx^0 = d
dtt+ 2 x= 1 + 2 x.C=t+ 2 x, x( 0 )= 1x=C
2 t
2 , x(^0 )=^1
x(t) 1 =2 t t^2
4.
x(t)= t^2
4 +2 t+^1