Optimal control, Bolza problem
ZT
0
f(t,x(t),u(t))dt+φ(x(T))!max
x(t)=g(t,x(t),u(t)),x( 0 )=x
0
By the fundamental theorem of the calculus
φ(x(T)) = φ(x( 0 ))+
ZT
0
φ^0 (x(t))x(t)dt=
= φ(x 0 )+
ZT
0
φ^0 (x(t))g(t,x(t),u(t))dt.
Asx 0 is Öxed one can write the goal function as
ZT
0
f(t,x(t),u(t))+φ^0 (x(t))g(t,x(t),u(t))dt!max.