Optimal stopping
IfF(x)is the distribution function of(ξn)then the optimal exercise
boundary isαT = 0 ,
αt = E(Vk+^1 (ξt))
1 +r=
E(max(ξt+ 1 ,αt+ 1 ))
1 +r=
=^1
1 +rZαt+ 10αk+ 1 dF+Z∞
αt+ 1xdF(x)=
=
1
1 +rαt+ 1 F(αt+ 1 )+Z∞
αt+ 1xdF(x).
which is a backward induction for(αt).