5.4 APPLICATIONS OF OPERATIONAL AMPLIFIERS 249io
iS= 1 +Rf
R 1(5.4.28)Charge-to-Charge Amplifier
A circuit is shown in Figure 5.4.7 in which there is a capacitorC 1 in the−input line and a
capacitorCfin the feedback loop. KCL at nodeXgives
dq 1
dt+dqf
dt= 0 (5.4.29)whereq 1 andqfare charges on the input and feedback capacitors. Thus,
q 1 =−qf or C 1 vi=−Cfvo orvo
vi=−C 1
Cf(5.4.30)Negative Impedance Converter
The op-amp circuit of Figure 5.4.8 causes a negative resistanceRinbetween the input terminal
and ground. In the more general case, whenRis replaced by an impedanceZ,the circuit gives a
negative impedance. Using ideal op-amp techniques, one has
v 1 =vin; i 1 =v 1
R 1=vin
R 1=i 2vo=i 2 (R 1 +R 2 )=vin(
1 +R 2
R 1)
; i 3 =vo−vin
R=vinR 2
RR 1=−iinso that
Rin=vin
iin=−RR 1
R 2(5.4.31)−
+X voCfC 1viFigure 5.4.7Charge-to-charge amplifier.−
+voi 2iin i^3i 1v 1Rin vin2 31R 1 R 2+ R−Figure 5.4.8Negative impedance converter.