278 DIGITAL BUILDING BLOCKS AND COMPUTER SYSTEMS
TABLE 6.1.3Basic Boolean Identities
Identity Comments
1.X+ 0 =X Identities 1–9 are basic to Boolean algebra
2.X+ 1 = 1
3.X+X=X
4.X+X ̄= 1
5.X· 0 = 0
6.X· 1 =X
7.X·X=X
8.X·X ̄= 0
9.X ̄ ̄=X
10.X+Y=Y+X Commutative
11.X·Y=Y·X Commutative
12.X+(Y+Z)=(X+Y)+Z Associative
13.X·(Y·Z)=(X·Y)·Z Associative
14.X·(Y+Z)=X·Y+X·Z Distributive
15.X+Y·Z=(X+Y)·(X+Z)
16.X+X·Y=X Absorption
17.X·(X+Y)=X
18.X·Y+X ̄·Z+Y·Z=X·Y+X ̄·Z Consensus
19.X+Y+Z=X ̄·Y ̄·Z ̄ DeMorgan
20.X·Y·Z=X ̄+Y ̄+Z ̄ DeMorgan
EXAMPLE 6.1.3
For the switching functionF=A
(
A ̄+B
)
, draw a corresponding set of logic blocks and write
the truth table.
Solution
A suitable connection of logic blocks is shown in Figure E6.1.3. Using the intermediate variables,
the truth table is as follows.
A
B
A
F = A (A + B)
A + B
Figure E6.1.3
ABA A+B F
001 1 0
011 1 0
100 0 0
110 1 1
EXAMPLE 6.1.4
Derive the Boolean function for the combinational network shown in Figure E6.1.4(a).