APPENDIX
D
Mathematical Relations
D.1Trigonometric Functions
D.2Exponential and Logarithmic Functions
D.3Derivatives and Integrals
D.4Series Expansions and Finite SeriesD.1 TRIGONOMETRIC FUNCTIONS
sin(x±π
2)=±cos(x)cos(x±π
2)=∓sin(x)sin(x±y)=sin(x)cos(y)±cos(x)sin(y)cos(x±y)=cos(x)cos(y)∓sin(x)sin(y)sin( 2 x)=2 sin(x)cos(x)cos( 2 x)=cos^2 (x)−sin^2 (x)2 j sin(x)=ejx−e−jx2 cos(x)=ejx+e−jx2 sin(x)sin(y)=cos(x−y)−cos(x+y)2 sin(x)cos(y)=sin(x−y)+sin(x+y)2 cos(x)cos(y)=cos(x−y)+cos(x+y)sin^2 (x)+cos^2 (x)= 12 sin^2 (x)= 1 −cos( 2 x)2 cos^2 (x)= 1 +cos( 2 x)4 sin^3 (x)=3 sin(x)−sin( 3 x)838