APPENDIX
H
Laplace Transforms
Iff(t)is a piecewise continuous real-valued function of the real variablet( 0 ≤t<∞), and
|f(t)|<Meσt(t > T;M,σ,Tpositive constants), then theLaplace transformoff(t), given by
La[f(t)]=F(s)=
∫∞
0
e−stf(t) dt, (1)
exists in the half-plane of the complex variables=σ+jω, for which the real part ofsis greater
than some fixed values 0 , i.e.,Re(s)s 0.
Theinverse transformis defined as
f(t=)La−^1 [F(s)]=
1
2 πj
σ∫+j∞
σ−j∞
F(s)estds (2)
whereσ>s 0 is chosen to the right of any singularity ofF(s).
The property of Laplace transform given by
La
[
f(r)(t)
]
=
∫∞
0
e−st(
drf
dtr
)dt=srF(s)−
∑r−^1
n= 0
sr−^1 −nf(n)( 0 +)
or
La
[
drf(t)
dtr
]
=srF(s)−sr−^1 ( 0 +)−sr−^2
df
dt
( 0 +)−...−
dr−^1 f
dtr−^1
( 0 +) (3)
makes the Laplace transform very useful for solving linear differential equations with constant
coefficients, and many boundary value problems.
A summary of properties of Laplace transformation and a table of Laplace transform pairs
are given below.
Summary of Properties of Laplace Transformation
Property Time Function Laplace Transform
Linearity a 1 f 1 (t)±a 2 f 2 (t) a 1 F 1 (s)±a 2 F 2 (s)
Differentiation f′(t) sF (s)−f( 0 +)
fn(t) snF(s)−sn−^1 f( 0 +)−sn−^2 f′( 0 +)−...−fn−^1 ( 0 +)
Integration f−^1 (t)=
∫t
0
f(τ) dτ F(s)
s
+f
− (^1) ( 0 +)
s
f−n(t) F(s)
sn
+f
− (^1) ( 0 +)
sn
+f
− (^2) ( 0 +)
sn−^1
+...+f
n( 0 +)
s
851