132 9 Number Systems1 !• ^ %- -%f y >y y ^Fig. 9.2. Uncountability equivalence of (a,b) and (0,1)-1 +1Fig. 9.3. The correspondence between (-1,1) and '.Example 9.6.11 / : R i-» (—f,f), /(x) = arctan(rr) is a i-i correspon-
dence, i.e. fix) is 1-1 and onto. Refer to Figure 9.4-*=arctan(x) ^^-^7l<2
j, *arctan(x) x~~rJ2Fig. 9.4. The correspondence between (-f ,f) andProposition 9.6.12 // (a, b) is any open interval, then
(0,l)~(a,&)~R~[0,l)-Proof.
3/:(0,l)^[0,l)isl-l(/(a:) = a;).
3g : [0,1) ^ R is 1-1 {g(x) = x).
1:R4 (0,1) is 1-1 and onto (f(x) = x).
[0,1) 4M4 (0,1) is 1-1.By Cantor-Schruder-Bernstein Theorem [0,1) ~ (0,1). •