196 14 Special TransformationsThen, the unique solution is y(t) = etAyo +p(t), whereetAyo2e* + e"
2e< - e~
andp(t) =
/ 0 V (e~u + ue"") + e-'(e~" - ue-")] du
/o [e'(e-" + we"") + e^e"" + we" du
Then, after integration we havep(t) =-2 v(t)
3et-t
3e*-2One can sotoe i/ie akwe differential equation system using Laplace trans-
forms:y'(t) = Ay(t) + f(t)^s<£>
s -1
-1 s»i(s)~*7i(«)01
10l^i(s)(*)i i
iThen, the resolvent matrix is(sI-A)-^
1
(s-l)(s + lIf we multiply both sides of (*) 6y (**), we /wroes 1
1 s
(**)T](S) =T)(s)1(s-i)(s + i) L
I
s-l +3s+ 1
s + 31y(*) =- s^2 (s-l)(s + l)
1s^2 + l
2s0
-2
3e(-£
3e' -2In order to find e , we expand right hand side of (•*) asn(s) =["1
2
1
L2ll
2
1
1 i i 2 J
+ s + 1 •\ 2-If we invert it, we will have the following
•" = £
e* + e * el — e *