200 14 Special Transformations
Table 14.3. A Brief Table for Z transforms
y{k)
(2)
(3)
1
k
k^2
(4)
(5) k{m
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
fc^3
, m = 0,1,
ak
kak
k\
e-ak
sin bk
cos bk
e-ak sm bk
e~akcosbk
Valid
Z transform \z\ > r
r](z) r
-l
u-1)^4
(*-«)^2
it
z
z - e - °
z sin b
22 —2z2(2 —cos cos fc+e" 6) 2ft
22 -2z cosb + fi~^2 "
ze""sinb
z^ — 2ze~a cos 6 + e —2"
z(z — ti'~" cos fc)
z^2 — 2^e~a cos b-f-e~2fl
Table 14.4. Properties of Z transforms
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
0)
(10)
(11)
(12)
Inverse
y(k)
ayi(k) + by 2 (k)
y(k + \)
y(k + n)
y(k-c), c> 0
aky(k)
ky{k)
k^2 y(k)
kmy(k), m = 0,1,2,...
Y.ku=oV^k ~ u)y 2 {u)
yi(fc)ya(fe)
£« = 0 2/(U)
Z transform
V(z)
arii(z) + brj 2 (z)
zri(z) - zy(0)
znn{z) - zny(0)
~zn~]y(l) zy(n-l)
«~c77(a)
^) ,d7j(z)
(^4) rfz
-^[-^'W]
(-£)%()
771(2)772(2)
^JrP'^1 1l(/')')2(P^2)<i/'
^(*)
We know -0(2)
z — a ' 2 — a 2
Then, by superposition,
-, and rj 2 {z) V2(k) = f(k
y(k) = a
ky
0 + J2 f(
k - (^1) - ")«"•
u=0