Solutions 219SSXX = ]P x^2 - 2mx^2 + mx^2 = y^x; 2 -2
mx ,Pi —-mSSxy __ - E x» E 2/i + TO ExiViwhich is dictated by the matrix equation above.•v SS^ - x SSxy _ y E A ~ myx^2 - x ]T xtyi + myx^20o =
A> =y E
xl -
xE ^2/i _ E ?/; E ^ - E ^ E ^2/*
A)
bbxx mbbxx
E ^i E 2/i - E Xi E a^iJ/i"»!>?-Q><)
2which is dictated by the matrix equation above.
We may use calculus to solve min SSE:
SSE = Hi/ - A/3||^2 = £(W - [A, + /3iXi])^2SS£ = J2 Vf - 2 5Z Vifa - 2/3i X) ^* +
m/3°
+ 2^>^ I]
Xi+ # 13
x?-
dSSE
d(3o-2 ^ i/j + 2m/3 0 + 2/3! ^ Xi = 0^ „ E«• /3 2/i - /?i E ^t - „ -
0 = — —— = y - fax.
dSSEdpi = -2 J2
xiVi +
2/3o J2
Xi+
2& Yl
x2i = °
«• 53 aiij/i - (?/ - /3ix) ^ Xj - ft ^ x
2= 0
a ExiVi -yYuxi Ea:»yi - mxv = ssxv
2-jXi ~~ x 2-jXi /_jXi ~ mx bbxx
As it can be observed above, the matrix system and the calculus mini-
mization yield the same solution!
Let the example data be (1,1), (2,4), (3,4), (4,4), (5,7). Then,
A/3 = y&"1 r
12
13
14
15r a 1
PO ="1"
4
4
4
7A^1 A = 5 15
15 551 3
3 11
, det{ATA) = 10.