Solutions 237
xn = A(2)-%I = 4 -6
-6 12
1.5
1.0
Ab = bi - bu =
xi - xu
-0.5
-0.5
f
-3
=HIA,II = \H
VlO, ||a;/|| = VT=»
\\xi\\
Then, the relative error for this case is is ^2 = 5.0.
- The maximum error is the condition number
det(sJ - 4(2)) =
s-1
l = (-D(-J)-^o
=>Ai =
6
-v
4-v/l3
13 4 + \/T3
"*2 = ^ •
Therefore, c[4(2)] = % = ^§ = £fff§ = 19.2815 is the upper
bound.
3.
4(2) + AA(2) =
1|
1 I
2 3
+
(^0) 2"
I 1
Ax = xui -xi -
hxin = bi => xiu = bi
Ax\
1.0
0.5
2.0
0.5
=$•
_ y/ 425
\xi + Ax\ ~ y/h25
= 1.84391
||4(2)|| = A 2 = 4 +/^13 = 1.26759
|AA(2)|| is the largest eigenvalue of 1 2
'2 3
, which is 0.9343. Then,
M(2)|
P(2)|
0.9343
1.2676
0.7371
\\xr + Ax
iM2)\
1.84391
0.7371
= 2.5017
ll^(2)||
- The maximum error is ||4(2)|| ||4(2)_1||, where ||4(2)_1||is the largest
eigenvalue of 4(2)_1 as calculated below:
det(s/-4(2)-^1 )
s-4 6
6 s-12 = (s-4)(s-12)-36 = 0