244 Solutions
7
j-
/
~%i.i.-i)
i /
/v,-',-D
j f(0,f',-«
(-•,0,-f') (t,0,-f'>
f*7^
RS^—™~™™™™™-T«™™| ^
/ It/
r 1 * /
#7 ' *
* * I / *
***'*, ,/^\. V
/ r«
/ l
L* ?~ZZZJL~~««~^^
*ff
Fig. S.10. The dodecahedron, 0: golden ratio
7.6 See Figure S.10.
The polyhedron vertices of a dodecahedron can be given in a simple form
for a dodecahedron of side length a = \/b - 1 by
(0,±r\±</>f, (±^,0,±<A-^1 )T, (±<T\±^0)Tand(±l,±l,±l)T;
where <j> — ^^- is the golden ratio. We know (f> - 1 = ^ and 0 = 2 cos f. See
Figure S.ll.