Principles of Mathematics in Operations Research

(Rick Simeone) #1
296 Index

trigonometric, 184
polytope, 96, 99-100, 115, 241-244, 246
projection, 37-43
proof, 4
proof making, 5-9, 206-209
combinatorial method, 207-209
construction, 6
contradiction, 8
contraposition, 8
forward-backward method, 5, 207-208
induction, 7, 98, 225, 227, 269, 270,
286
selection, 6
specialization, 6
theorem of alternatives, 9, 113-115
uniqueness, 7
proposition, 3
pyramid, 100, 242

QR algorithm, 88, 89, 234-236, 238
quadratic form, 76, 281
quantifiers, 4

rational, 122, 130, 133, 267
ray, 115, 251, 252
Rayleigh, 76-77, 84, 230
regression, 47, 218
relation
equivalence, 129, 134, 269
order, 121, 134, 269
remark, 4

Schwartz Inequality, 35, 128
scientific inquiry, 1
series, 175-188, 284-289
convergent, 165, 175-180, 186,
284-285
divergent, 176-180, 186, 284-285
Fourier, 184
partial sum, 175
power, 179-188, 285-289
remainder, 176
tests, 177-179, 186, 284-285
trigonometric, 185
set
at most countable, 129-133, 165
bounded, 121, 143, 150, 161
Cantor, 150-151


closed, 142, 144-148, 150, 153, 158,
161, 271
closed ball, 139, 152, 271
closure, 143, 144, 152, 271
compact, 147-150, 159-161, 166, 279
connected, 151-153, 161-164, 166,
271, 279
continuity, 157-166, 279
convex, 93-102, 173
countable, 129-134, 150, 270
dense, 143
finite, 129-133
gib, 122, 133, 266
infimum, 122, 133, 159, 266
interior, 141, 145
k-cell, 149
lub, 122, 133, 266
neighborhood, 142, 143
nested intervals, 148
open, 141, 143-146, 153, 158, 173,
271
open ball, 139, 143, 152, 271
ordered, 121-123
perfect, 143, 150
seperated, 151, 153, 271
supremum, 122, 133, 145, 159, 266
uncountable, 129-133
span, 16, 24, 95
Stirling, 186

Taylor
approximation, 74, 172, 173, 180,
280-281
theorem, 172
tetrahedron, 100, 243
theorem, 4
TSP, 33, 153, 272-278

variable
basic, 25, 44, 105
dependent, 25, 105
entering, 105, 116, 253
Bland's rule, 116, 253
Dantzig's rule, 105
free, 25
independent, 25, 105
leaving, 105, 116, 254
nonbasic, 25, 44, 105, 253
vector space, 13
Free download pdf