3.1 Inner Products 37Proposition 3.1.16 The cosine of the angle between any two vectors u and
v is
COSC :U V T
iu \\v\\Remark 3.1.17 The law of cosines:\\u — v\\ = ||u|| + \\v|| — 2 ||u|| llvll cose.3.1.4 Projection
Let p = xv where W = x 6 R is the scale factor. See Figure 3.3.(u - p) J- v «=> vT(u — p) = 0 & x =VxT UX-AxisFig. 3.3. ProjectionDefinition 3.1.18 The projection p of the vector u onto the line spanned by
T
the vector v is given by p — %^-v.
The distance from the vector u to the line is (Schwartz inequality) therefore
ir u
u =-v
v^1 vu
T
u - 2^- + &?vT
v = (»r
»)("r
;)-(«r
«)a
,
V^1 V V^1 V V^1 V3.1.5 Symmetric Matrices
Definition 3.1.19 A square matrix A is called symmetric if AT = A.
Proposition 3.1.20 Let A e Rmxn, rank{A) = r. The product ATA is a
symmetric matrix and rank(ATA) = r.