3.2 Projections and Least Squares Approximations 41Proposition 3.2.11 Any set of independent vectors ai,a,2,- • • ,an can be con-
verted into a set of orthogonal vectors v\, V2, • • •, vn by the Gram-Schmidt pro-
cess. First, Vi = a\, then each Vi is orthogonal to the preceding v\, v-i,..., «i_i:Vi = a,-vj a%
vfviViui-lui
Vi-l.For every choice of i, the subspace spanned by original ai,a2,-..,aj is also
spanned by v\, v-i,..., Vi. The final vectors{*
=
i&}
Vj_
«illJi=i
are orthonormal.Example 3.2.12vi = a%, and
a~ v\ 1
v(vi 2 *Leta 2 -ai =\vi --"1"
0
1, a 2 =1
1
0, as =0
1
1= f i => v 3 = a 3 iui \v 2 = Then,q\and 03l
V2"1"
0
1r! i
V2(^0) l ?2
- 1 •
2
1
1
2.
1 _
2
vG
1. V6.
9
12- 2 "
3
2
3
2
. 3.
—1 "
V3
1
v/3
1. vs.
Ol i>i = -v/2oj
«2 = §«i + «2 = \J\qi +
as = \vx + \v 2 + v 3 = yj\qi + yj\q2 + yj §<2°2<£> [ai,a 2 ,a 3 ] = [gi, 02,03]»3<^> A = QR.Proposition 3.2.13 A — QR where the columns of Q are orthonormal vec-
tors, and R is upper-triangular with \vi\ on the diagonal, therefore is invert-
ible. If A is square, then so are Q and R.