Principles of Mathematics in Operations Research

(Rick Simeone) #1

46 3 Orthogonality


w


Fig. 3.8. Least norm squared solution: (ATA) is not invertible and A^ = QiE'Qj


Table 3.1. How to solve Ax = b, where A G Rmx"
Case

b e -£(4)

b e M(AT)

b <jL 11(A)
bgAf(A)

Subcase

r=n=m

r=m < n
A=[B\N]

r=m
[A\\b
B\N
o

r <

A^ -

< n

6'
0

m
I\N~\
O \

(ATA):
invertible
(ATA):
not
invertible

Solution

x=A~^1 b

XB =
B_16-
B~^1 Nxn

XB =
B-'b-

B^NXn

many

x=A*b

many
x=A*b
min.norm

Type

Exact
unique

Exact
many

Exact

many

Trivial

Least

Squares
Unique
Least
Squares
Least
Norm
Squares

Special Forms
A=LU => Lc=b,Ux=c
A=QR => Rx=QTb
A = QtEQl =»
x=Q 2 Z-xQlb
B=LU => Lc=b,UxB=c
B=QR => RxB=QTb
B=Q-,EQl =>
xB=Q2S-^1 Qjb
B=LU =• Lc=b,UxB-c
B=QR => RxB=QTb

B=Q 1 EQ 2 r =>

xB=Q2Z~^1 QTb

T
x=a

VaG

' -N'
I
M.n~r

)

A=QR => Rx=QTb
A = QxEQl =>
x=Q 2 E-lQjb

A^QiEQZ =*
x=Q 2 E1iQjb

Inverse

A^A-^1

A^B-^1

A* « B-^1

none

A*=
(ATA)~^1 AT

A*=
Q 2 E^Ql
Free download pdf