56 4 Eigen Values and VectorsExample 4.3.3 From the previous example,A =MO
i 1 0
0 I 3
"44=*Ai = 1, A 3 =Ax = X\x <&\x\ + |x2 = 0 <£> x\ + x 2 = 0
I x 2 + |x 3 = 0 & x 2 + x 3 = 0±X1
\x\ + x 2
;X 2 + fx 3 _=1*1"
1*2
1*3.:}
Ax = X 2 x <=>|*i
5X1 + X 2
fX 2 |*3Thus, v\ =Xi
x 2
X37*2 - 7X3 = 0 <4> X 2Ax = A 3 x <=>H = 0.1- X 3 = 0. J
Thus, v 2 =
1*1
\x\ + x 2
[X2 + fx 3 _="fail"fx 2
.1*3.
xx =0.
O- §xi - \x 2 = 0 =>• 2a:i + x 2 = 0. \ Thus, v 3 =
x 2 = 0.Therefore, S =[S\I]Then,100
-1 10
1 1 1100
-1 10
111100'
010
001-4"100
010
0 1 1100'
1 10
-10 1-»'100
010
0011 00"
1 10
-2-1 1= [I\S -iiS^AS ••1 00'
1 10
2 -1 11 00"
\ 10
0 1 2
."44.100'
-1 10
111=loo"
01 0
oof= A.Remark 4.3.4 Any matrix with distinct eigen values can be diagonalized.
However, the diagonalization matrix S is not unique; hence neither is the
basis {«}"_!• If we multiply an eigen vector with a scalar, it will still remain
an eigen vector. Not all matrices posses n linearly independent eigen vectors;
therefore, some matrices are not dioganalizable.