4 Eigen Values and Vectors
10 r
111
010
, 5-
V2
-1 _
= (l,l,0)r
- I I I •
2 2 2
0 0 1
1 1 1
.2 2 2.
, S~^1 AS =
"200"
020
004
s =
4.3.3 Block Diagonal Form
In this case, we have
3i 9 iii > 1, dim(Af[A - A;/]) < n.
Definition 4.3.6 The least degree monic (the polynomial with leading co-
efficient one) polynomial m(s) that satisfies m(A)=0 is called the minimal
polynomial of A.
Proposition 4.3.7 The following are correct for the minimal polynomial.
i. m(s) divides d(s);
ii. m(Xi) =0, Vi = 1,2,..., k;
Hi. m(s) is unique.
Example 4.3.8
A =
c 1 0
OcO
00c
, d{s) = det(s7 - A)
s-c -1 0
0 s-c 0
0 0 s-c
= (s- c)^3 = 0.
Ax = c, ni = 3. m(s) =? (s — c), (s — c)^2 , (s — c)^3
[A - Xil] =
010
000
000
[A - Ai/]^2 =
0 10
000
000
010
000
000
^0 3 => m(s) ^(s- c).
= 0 3 => m(s) - (s - c)^2.
Then, to find the eigen vectors
(A - d)x = <?<£>
010
000
000
x = 6 =>• Dn
"1"
0
0
, V\2 =
"0"
0
1
Proposition 4.3.9
d(s) = nU(* - ^)"% m(s) = n?=1(a - Xi)m\ 1 < rrn < m, i = 1,2,.
*W - Ai/)] § MU - V)
2
] i • • • i MU - vn
= jVp - A*/)™^^1 ] = • • • = N{{A - Xil)ni]
,k.