288 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
Solution
The derivation of the momentum equation for an element of the boundary layer is
presented in detail in Section 11.2 and the final expression is:
RoD
∂/∂x
∫l
0
usuxuxdy
A sine function may be developed as follows. WhenyD0,uxD0andwhenyDυ,
uxDus.
Thus: uxDussin
ay
and whenyDυ,sinayD/2oraυD/2andaD/ 2 υ.
∴ uxDussin
y/ 2 d
and over the range 0<y<υ,
ux/us Dsin[
/ 2
y/υ]
The integral in the momentum equation may now be evaluated for the laminar boundary
layer considering the ranges 0<y<υandυ<y<lseparately.
∴
∫l
0
usuxuxdyD
∫υ
0
u^2 sf 1 sin[
/ 2
y/υ]gfsin[
/ 2
y/υ]gdy
C
∫l
υ
usususdy
Du^2 s
∫υ
0
[sin
y/ 2 υsin^2
y/ 2 υ]dy
Du^2 s[[cos
y/ 2 υ]/
/ 2 υy/ 2 Csin
y/υ/
2 /υ]υ 0
Du^2 sυ[
2 /
1 / 2 ]
R 0 D
∂ux/∂yyD 0 D us/ 2 υ
and substituting in the momentum equation:
∂
[
u^2 sυ
(
2
1
2
)]/
∂xD us/ 2 υ
∴ υdυD ^2 dx/us
4
∴ υ^2 / 2 D[^2 /
4 ]
x/us
and: υD 4. 80
x/us 0.^5
∴
υ/xD 4. 80
/xus 0.^5 D 4. 80 Rex^0.^5