296 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
The mass flux across 1 – 2 is:
∫L
0 uxdy.The change from 1–2 to 3–4 is:
∂
∂x{∫
L
0 uxdy}
dx.The rate of momentum entering through 2 – 4 is:
∂
∂x{∫L
0uxusdy}
dx,Assumingus 6 Df
x, then:
∂P
∂x
D 0.
A momentum balance gives:
∂
∂x{∫L
0u^2 xdy}
dxD∂
∂x{∫L
0uxusdy}
dxCR 0 dxor:
∂
∂x{∫L
0ux
usux dy}
DR 0 D
(
∂ux
∂y)
yD 0for a Newtonian fluidThe sine function is:uxDKsinky,so∂ux
∂yDKkcoskyand∂^2 ux
∂y^2Kk^2 sinkyis satisfied for all finite values ofKandk.
The boundary conditions are:
yD 0 uxD 0
yD 0∂^2 ux
∂y^2D 0
yDυuxDus KDusyDυ∂ux
∂yD 0
Thus: kD
2
andkD2 υ.
Hence: uxDussin
2
y
υ,
∂ux
∂yD
us
2 υcos2
y
υand:
{∫L
y}
D 0
Thus: u^2 s
∂
∂x{∫υ0sin2
y
υ(
1 sin2
y
υ)
dyD us
2 υ
∂
∂xυ{∫ 1
0[
sin2
y
υsin^22
y
υ]
dy
υ}
D
2 υus