58 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
Solution
For a Bingham-plastic material, the shear stressRsat radiussis given by:
RsRYDC (^) p
(
dux
ds)
RsRYdux
dsD 0 RsRYThe central unsheared core has radiusrcDrRY/R(whererDpipe radius andRD
wall shear stress) since the shear stress is proportional to the radiuss.
In the annular region:
dux
dsD
1
(^) p
RRYD
1
(^) p
(
P
s
2 lRY
)
from a force balanceuxD∫
duxD1
(^) p
(
P
s^2
4 lRYs)
CconstantFor the no-slip condition:uxD0, whensDr
Thus: 0 D
1
(^) p
(
P
r^2
4 lRYs)
Cconstantand: usD
1
(^) p
{
P
4 lr^2 s^2 RYrs}
Substituting: PD
2 R
l/rusD1
(^) p
{
R
2 rr^2 s^2 RYrs}
(i)The volumetricflowrate through elemental annulus, dQADus 2 sdsThus: QAD
∫rrc1
(^) p
{
R
2 rr^2 s^2 RYrs}
2 sdsD
2
(^) p
R
[
1
2 r(
r^2 s^2
2s^4
4)
RY
R
(
rs^2
2s^3
3)]rrcWriting
RY
R
DXandrcDrRY
R
,then :QAD
2
(^) p
R
{
1
2 r(
r^4
2r^4
4)
X
(
r^3
2r^3
3)
1
2 r(
X^2 r^4
2X^4 r^4
4)
CX
(
r^3 X^2
2r^3 X^3
3)}
D
2 R
(^) p
r^3