92 4. Particular Determinants
4.6.2 A ReciprocalPowerSeries
Theorem 4.21. If
∞
∑r=0(−1)
r
ψntr
=[
∞
∑r=0φrtr]− 1
,φ 0 =ψ 0 =1,then
ψr=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
φ 1 φ 0φ 2 φ 1 φ 0φ 3 φ 2 φ 1 φ 0.....................φn− 1 φn− 2 ... ... φ 1 φ 0φn φn− 1 ... ... φ 2 φ 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n,
which is a Hessenbergian.
Proof. The given equation can be expressed in the form
(φ 0 +φ 1 t+φ 2 t2
+φ 3 t3
+···)(ψ 0 −ψ 1 t+ψ 2 t2
−ψ 3 t3
+···)=1.Equating coefficients of powers oft,
n
∑i=0(−1)
i+1
φiψn−i= 0 (4.6.4)from which it follows that
φn=n
∑i=1(−1)
i+1
φn−iψi. (4.6.5)In some detail,
φ 0 ψ 1 =φ 1φ 1 ψ 1 −φ 0 ψ 2 =φ 2φ 2 ψ 1 −φ 1 ψ 2 +φ 0 ψ 3 =φ 3.............................................φn− 1 ψ 1 −φn− 2 ψ 2 +···+(−1)n+1
φ 0 ψn=φn.These arenequations in thenvariables (−1)
r− 1
ψr,1≤r≤n, in which
the determinant of the coefficients is triangular and equal to 1. Hence,
(−1)
n− 1
ψn=∣
∣
∣
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣
φ 0 φ 1φ 1 φ 0 φ 2φ 2 φ 1 φ 0 φ 3........................................φn− 2 φn− 3 φn− 4 ··· φ 1 φ 0 φn− 1φn− 1 φn− 2 φn− 3 ··· φ 2 φ 1 φn∣
∣
∣
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ n.The proof is completed by transferring the last column to the first position,
an operation which introduces the factor (−1)
n− 1
.