Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.6 Hessenbergians 95

br=ar,r> 1.

Bn(0) =An,

B

(n)
ij

(0) =A

(n)
ij

. (4.6.11)

Theorem 4.23.


a.B


n
=−nBn− 1.

b.


n

r=1

A

(n)
rr =nAn−^1.

c. Bn=

n

r=0

(

n

r

)

Ar(−x)

n−r
.

Proof.


B 1 =−x+A 1 ,

B 2 =x

2
− 2 A 1 x+A 2 ,

B 3 =−x

3
+3A 1 x

2
− 3 A 2 x+A 3 , (4.6.12)

etc., which are Appell polynomials (Appendix A.4) so that (a) is valid for


small values ofn. Assume that


B


r=−rBr−^1 ,^2 ≤r≤n−^1 ,

and apply the method of induction.


From (4.6.10),

Bn=(n−1)!

n− 2

r=0

an−rBr

r!

+(a 1 −x)Bn− 1 ,

B


n=−(n−1)!

n− 2

r=1

an−rrBr− 1

r!

−(n−1)(a 1 −x)Bn− 2 −Bn− 1

=−(n−1)!

n− 2

r=1

an−rBr− 1

(r−1)!

−(n−1)(a 1 −x)Bn− 2 −Bn− 1

=−(n−1)!

n− 3

r=0

an− 1 −rBr

r!

−(n−1)(a 1 −x)Bn− 2 −Bn− 1

=−(n−1)!

n− 2

r=0

bn− 1 −rBr

r!

−Bn− 1

=−(n−1)Bn− 1 −Bn− 1

=−nBn− 1 ,

which proves (a).

Free download pdf