4.7 Wronskians 97and whereφ′
m=(m+1)φm−^1 ,φ^0 = constant,prove thatA
′
n
=n(n−1)An− 1.3.Prove thatn
∏r=1∣
∣
∣
∣
1 arx− 11∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1 b 12 xb 13 x2
··· ··· b 1 ,n+1xn− 11 b 23 x ··· ··· b 2 ,n+1xn− 1− 11 ··· ··· b 3 ,n+1xn− 2··· ··· ··· ···
− 11
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1,
wherebij=j− 1
∏r=iar.4.IfUn=∣
∣
∣
∣ ∣ ∣ ∣ ∣ ∣
u′
u′′
/2! u′′′
/3! u(4)
/4! ···uu′
u′′
/2! u′′′
/3! ···uu′
u′′
/2! ···uu′
······ ···∣
∣
∣
∣ ∣ ∣ ∣ ∣ ∣ n,prove thatUn+1=u′
Un−uU
′
nn+1. (Burgmeier)
4.7 Wronskians
4.7.1 Introduction
Letyr=yr(x), 1≤r≤n, denotenfunctions each with derivatives of
orders up to (n−1). These functions are said to be linearly dependent if
there exist coefficientsλr, independent ofxand not all zero, such that
n
∑r=1λryr= 0 (4.7.1)for all values ofx.
Theorem 4.24. The necessary condition that the functionsyrbe linearly
dependent is that
∣
∣
y(i−1)
j∣
∣
n=0
identically.
