Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.7 Wronskians 97

and where

φ


m=(m+1)φm−^1 ,φ^0 = constant,

prove that

A


n
=n(n−1)An− 1.

3.Prove that

n

r=1





1 arx

− 11





=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

1 b 12 xb 13 x

2
··· ··· b 1 ,n+1x

n

− 11 b 23 x ··· ··· b 2 ,n+1x

n− 1

− 11 ··· ··· b 3 ,n+1x

n− 2

··· ··· ··· ···

− 11

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

n+1

,

where

bij=

j− 1

r=i

ar.

4.If

Un=




∣ ∣ ∣ ∣ ∣ ∣

u


u

′′
/2! u

′′′
/3! u

(4)
/4! ···

uu


u

′′
/2! u

′′′
/3! ···

uu


u

′′
/2! ···

uu


···

··· ···




∣ ∣ ∣ ∣ ∣ ∣ n

,

prove that

Un+1=u


Un−

uU

n

n+1

. (Burgmeier)


4.7 Wronskians


4.7.1 Introduction


Letyr=yr(x), 1≤r≤n, denotenfunctions each with derivatives of


orders up to (n−1). These functions are said to be linearly dependent if


there exist coefficientsλr, independent ofxand not all zero, such that


n

r=1

λryr= 0 (4.7.1)

for all values ofx.


Theorem 4.24. The necessary condition that the functionsyrbe linearly


dependent is that




y

(i−1)
j



n

=0

identically.

Free download pdf