Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

100 4. Particular Determinants


= 0 if the parameters are not distinct

W


ijk...r
= the sum of the determinants obtained by increasing

the parameters one at a time by 1 and discarding

those determinants with two identical parameters. (4.7.8)

Illustration.Let


W=



CC


C

′′



=W 012.

Then


W


=W 013 ,

W

′′
=W 014 +W 023 ,

W

′′′
=W 015 +2W 024 +W 123 ,

W

(4)
=W 016 +3W 025 +2W 034 +3W 124 ,

W

(5)
=W 017 +4W 026 +5W 035 +6W 125 +5W 134 , (4.7.9)

etc. Formulas of this type appear in Sections 6.7 and 6.8 on the K dV and


KP equations.


4.7.3 The Derivative of a Cofactor.............


In order to determine formulas for (W


(n)
ij

)


, it is convenient to change the

notation used in the previous section.


Let

W=|wij|n,

where


wij=y

(j−1)
i

=D

j− 1
(yi),D=

d

dx

,

and where theyiare arbitrary (n−1) differentiable functions.


Clearly,

w


ij
=wi,j+1.

In column vector notation,


Wn=


∣C

1 C 2 ···Cn


∣,

where


Cj=

[

y

(j−1)
1 y

(j−1)
2 ···y

(j−1)
n

]T

,

C


j=Cj+1.

Theorem 4.26.


a.

(

W

(n)
ij

)′

=−W

(n)
i,j− 1

−W

(n+1)
i,n+1;jn

.

b.


(

W

(n)
i 1

)′

=−W

(n+1)
i,n+1;1n

.
Free download pdf