100 4. Particular Determinants
= 0 if the parameters are not distinct
W
′
ijk...r
= the sum of the determinants obtained by increasing
the parameters one at a time by 1 and discarding
those determinants with two identical parameters. (4.7.8)
Illustration.Let
W=
∣
∣
CC
′
C
′′
∣
∣
=W 012.
Then
W
′
=W 013 ,
W
′′
=W 014 +W 023 ,
W
′′′
=W 015 +2W 024 +W 123 ,
W
(4)
=W 016 +3W 025 +2W 034 +3W 124 ,
W
(5)
=W 017 +4W 026 +5W 035 +6W 125 +5W 134 , (4.7.9)
etc. Formulas of this type appear in Sections 6.7 and 6.8 on the K dV and
KP equations.
4.7.3 The Derivative of a Cofactor.............
In order to determine formulas for (W
(n)
ij
)
′
, it is convenient to change the
notation used in the previous section.
Let
W=|wij|n,
where
wij=y
(j−1)
i
=D
j− 1
(yi),D=
d
dx
,
and where theyiare arbitrary (n−1) differentiable functions.
Clearly,
w
′
ij
=wi,j+1.
In column vector notation,
Wn=
∣
∣C
1 C 2 ···Cn
∣
∣,
where
Cj=
[
y
(j−1)
1 y
(j−1)
2 ···y
(j−1)
n
]T
,
C
′
j=Cj+1.
Theorem 4.26.
a.
(
W
(n)
ij
)′
=−W
(n)
i,j− 1
−W
(n+1)
i,n+1;jn
.
b.
(
W
(n)
i 1
)′
=−W
(n+1)
i,n+1;1n