4.8 Hankelians 1 107The second proof illustrates the equivalence of row and column op-erations on the one hand and matrix-type products on the other
(Section 2.3.2).
Second Proof.Define a triangular matrixP(x) as follows:P(x)=[(
i− 1j− 1)
xi−j]
n=
1
x 1x
2
2 x 1x
3
3 x
2
3 x 1................ n. (4.8.13)
Since|P(x)|=|P
T
(x)|= 1 for all values ofx.
A=|P(−h)APT
(−h)|n=
∣
∣
∣
∣
(−h)i−j(
i− 1j− 1)∣
∣
∣
∣
n|φi+j− 2 |n∣
∣
∣
∣
(−h)j−i(
j− 1i− 1)∣
∣
∣
∣
n=|αij|n (4.8.14)where, applying the formula for the product of three determinants at the
end of Section 3.3.5,
αij=i
∑r=1j
∑s=1(−h)i−r(
i− 1r− 1)
φr+s− 2 (−h)j−s(
j− 1s− 1)
=
i− 1
∑r=0(
i− 1r)
(−h)i− 1 −rj− 1
∑s=0(
j− 1s)
(−h)j− 1 −s
φr+s=
i− 1
∑r=0(
i− 1r)
(−h)i− 1 −r
∆j− 1
h
φr=∆
j− 1
hi− 1
∑r=0(
i− 1r)
(−h)i− 1 −r
φr=∆
j− 1
h∆
i− 1
h
φ 0=∆
i+j− 2
n φ^0. (4.8.15)The theorem follows. Simple differences are obtained by putting
h=1.
Exercise.Prove that
n
∑r=1n
∑s=1hr+s− 2
Ars(x)=A 11 (x−h).