114 4. Particular Determinants
Proof of (F).Denote the sum bySand apply the Hankelian relation
φr+s− 3 =ar,s− 1 =ar− 1 ,s.
S=
∑ns=1(s−1)Asj∑nr=1ar,s− 1 Air
+∑nr=1(r−1)Air∑ns=1ar− 1 ,sAsj=
n
∑s=1(s−1)Asj
δs− 1 ,i+n
∑r=1(r−1)Air
δr− 1 ,j.The proof of (F) follows. Equation (E) is proved in a similar manner.
Exercises
Prove the following:
1.
∑
p+q=m+2A
ij,pq
=0.2.
2 n− 2
∑m=0φm∑
q+q=m+2Aip,jq=(n−1)Aij.3.
2 n− 2
∑m=1mφm∑
p+q=m+2Aip,jq=(n2
−n−i−j+2)Aij.4.
2 n− 2
∑m=0φm∑
p+q=m+2A
ijp,hkq
=nAij,hk
.5.
2 n− 2
∑m=1mφm∑
p+q=m+2A
ijp,hkq
=(n2
−n−i−j−h−k−4)Aij,hk
.6.
2 n− 2
∑m=1mφm− 1∑
p+q=m+2A
ijp,hkq=iAi+1,j;hk
+jAi,j+1;hk
+hAij;h+1,k
+kAij;h,k+1
.7.
2 n− 2
∑m=0∑
p+q=m+2φp+r− 1 φq+r− 1 Apq
=φ 2 r, 0 ≤r≤n−1.8.
2 n− 2
∑m=1m∑
p+q=m+2φp+r− 1 φq+r− 1 Apq
=2rφ 2 r, 0 ≤r≤n−1.9.Prove thatn− 1
∑r=1rAr+1,jn
∑m=1φm+r− 2 Aim
=iAi+1,jby applying the sum formula for Hankelians and, hence, prove (F 1 )directly. Use a similar method to prove (E 1 ) directly.