124 4. Particular Determinants
Identities 1.
Vnr=n
∑j=1K
rj
n,^1 ≤r≤n. (4.10.4)Vnr=(−1)
n+r
(h+r+n−1)!(h+r−1)!(r−1)!(n−r)!, 1 ≤r≤n. (4.10.5)Vn 1 =(−1)
n+1
(h+n)!h!(n−1)!. (4.10.6)
Vnn=(h+2n−1)!(h+n−1)!(n−1)!. (4.10.7)
K
rs
n =VnrVnsh+r+s− 1, 1 ≤r, s≤n. (4.10.8)K
r 1
n =VnrVn 1h+r. (4.10.9)
K
nn
n=
Kn− 1Kn=
V
2
nnh+2n− 1. (4.10.10)
K
rs
n=
(h+r)(h+s)Kr 1
nKs 1
n(h+r+s−1)V
2
n 1. (4.10.11)
Kn=(n−1)!2
(h+n−1)!2(h+2n−2)!(h+2n−1)!Kn− 1. (4.10.12)Kn=[1!2!3!···(n−1)!]2
h!(h+ 1)!···(h+n−1)!(h+n)!(h+n+ 1)!···(h+2n−1)!. (4.10.13)
(n−r)Vnr+(h+n+r−1)Vn− 1 ,r=0. (4.10.14)Knn
∏r=1Vnr=(−1)n(n−1)/ 2. (4.10.15)
Proof. Equation (4.10.4) is a simple expansion ofVnrby elements from
rowr. The following proof of (4.10.5) is a development of one due to Lane.
Perform the row operationsR
′
i
=Ri−Rr, 1 ≤i≤n, i=r,onKn, that is, subtract rowrfrom each of the other rows. The result is
Kn=|k′
ij
|n,where
k′
rj=krj,k′
ij=kij−krj=
(
r−ih+r+j− 1)
kij, 1 ≤i, j≤n, i=r.After removing the factor (r−i) from each rowi,i=r, and the factor
(h+r+j−1)
− 1
from each columnjand then cancelingKnthe result can