4.11 Hankelians 4 139Qn=Qn(x)=[
x2(i+j−1)i+j− 1]
n. (4.11.12)
BothKnandQnare Hankelians andQn(1) =Kn, the simple Hilbert
matrix.
Sn=Sn(x)=[
vnix
2 j− 1i+j− 1]
n, (4.11.13)
where thevniarev-numbers.
Hn=Hn(x, t)=Sn(x)+tIn=
[
h(n)
ij]
n,
where
h(n)
ij=
vnix2 j− 1i+j− 1+δijt,Hn=Hn(x,−t)=Sn(x)−tIn=
[
h(n)
ij]
n, (4.11.14)
where
h(n)
ij (x, t)=h(n)
ij
(x,−t),H ̄
n(x,−t)=(−1)n
Hn(−x, t). (4.11.15)Theorem 4.43.
K
− 1
nQn=S2
n.Proof. Referring to (4.11.7) and applying the formula for the product
of two matrices,
K
− 1
n
Qn=[
vnivnji+j− 1]
n[
x2(i+j−1)i+j− 1]
n=
[
n
∑k=1vnivnki+k− 1x2(k+j−1)k+j− 1]
n=
[
n
∑k=1(
vnix2 k− 1i+k− 1)(
vnkx2 j− 1k+j− 1)
]
n=S
2
n. Theorem 4.44.
Bn=KnHnHn,where the symbols can be interpreted as matrices or determinants.
Proof. Applying Theorem 4.43,
Bn=Qn−t2
Kn