144 4. Particular Determinants
=
∣
∣
∣
∣
(
n+j− 2n−i)∣
∣
∣
∣
n=An,which proves (b).
Exercises
Apply similar methods to prove that
1.
∣
∣
∣
∣
(
n+j− 1n−i)∣
∣
∣
∣
n=(−1)
n(n−1)/ 2
,2.
∣
∣
∣
∣
1
(i+j−1)!∣
∣
∣
∣
n=
(−1)
n(n−1)/ 2
Kn[1!2!3!···(n−1)!]
2.
Define the numberνias follows:(1 +z)− 1 / 2
=∞
∑i=0νizi. (4.11.35)
Then
νi=(−1)
i2
2 i(
2 ii)
. (4.11.36)
Let
An=|νm|n, 0 ≤m≤ 2 n− 2 ,=
∣
∣
C 1 C 2 ···Cn− 1 Cn∣
∣
n(4.11.37)
where
Cj=[
νj− 1 νj...νn+j− 3 νn+j− 2]T
n. (4.11.38)
Theorem 4.48.
An=2−(n−1)(2n−1)
.Proof. Let
λnr=nn+r(
n+r2 r)
2
2 r. (4.11.39)
Then, it is shown in Appendix A.10 that
n
∑j=1λn− 1 ,j− 1 νi+j− 2 =δin2
2(n−1), 1 ≤i≤n, (4.11.40)An=2−(2n−3)∣
∣
C 1 C 2 ···Cn− 1 (λn− 1 ,n− 1 Cn)∣
∣
n,
=2
−(2n−3)∣
∣C
1 C 2 ···Cn− 1 C′
n∣
∣
n