146 4. Particular Determinants
Proof. Apply the Jacobi identity (Section 3.6.1) toAr, wherer≥i+1:
∣
∣
∣
∣
∣A
(r)
ijA
(r)
irA
(r)
rj A(r)
rr∣
∣
∣
∣
∣
=ArA(r)
ir,jr,
=ArA(r−1)
ij,
Ar− 1 A(r)
ij
−ArA(r−1)
ij=A
(r)
irA
(r)
jr. (4.11.47)
Scale the cofactors and refer to Theorems 4.48 and 4.49a:
A
ij
r−Aij
r− 1=
ArAr− 1(
A
ri
r Arj
r)
=2
−(4r−5)
Ari
rArj
r=2λr− 1 ,i− 1 λr− 1 ,j− 1. (4.11.48)Hence,
2
n
∑r=i+1λr− 1 ,i− 1 λr− 1 ,j− 1 =n
∑r=i+1(
A
ij
r−A
ij
r− 1)
=A
ij
n−Aij
i=A
ij
n− 2
2(i−1)
λi− 1 ,j− 1 , (4.11.49)which yields a formula for the scaled cofactorA
ij
n. The stated formula forthe simple cofactorA
(n)
ij follows from Theorem 4.49a. LetEn=|Pm(0)|n, 0 ≤m≤ 2 n− 2 , (4.11.50)wherePm(x) is the Legendre polynomial [Appendix A.5]. Then,
P 2 m+1(0)=0,P 2 m(0) = νm. (4.11.51)Hence,
En=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
ν 0 • ν 1 • ν 2 ···- ν 1 • ν 2 • ···
ν 1 • ν 2 • ν 3 ···- ν 2 • ν 3 • ···
ν 2 • ν 3 • ν 4 ···........................∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n. (4.11.52)
Theorem 4.51.
En=|Pm(0)|n=(−1)n(n−1)/ 2
2−(n−1)
2
.