4.12 Hankelians 5 155=
1
2
n+1
πi∫
C(ζ
2
−1)
n(ζ−x)
n+1dζ (putζ=x+2t)=
1
2 n+1πi∫
C′[(x+1+2t)(x−1+2t)]n(2t)n+1dt=
1
2 πi∫
C′g(t)t
n+1dt=
g
(n)
(0)n!,
where
g(t)=[{
1
2
(x+1)+t}{
1
2
(x−1) +t}]n. (4.12.5)
The lemma follows.
[(u+t)(v+t)]n
=n
∑r=0n
∑s=0(
nr)(
ns)
un−r
vn−s
tr+s=
2 n
∑p=0λnptpwhere
λnp=p
∑s=0(
ns)(
np−s)
un−s
vn−p+s
, 0 ≤p≤ 2 n, (4.12.6)which, by symmetry, is unaltered by interchanginguandv.
In particular,λ 00 =1,λn 0 =(uv)n
,λn, 2 n=1,λnn=Pn(x). (4.12.7)Lemma 4.57.
a.λi,i−r=(uv)
r
λi,i+r,b.λi,i−rλj,j+r=λi,i+rλj,j−r.
Proof.
λn,n+r=n+r
∑s=0(
ns)(
nn+r−s)
un−s
vs−r=
n+r
∑s=r(
ns)(
ns−r)
un−s
vs−r
.Changing the sign ofr,
λn,n−r=n−r
∑s=−r(
ns)(
ns+r)
un−s
vs+r
(puts=n−σ)