4.12 Hankelians 5 159D
n
τ
{Qn(t, t)}=∣
∣C
n(t)C 1 (t)C 2 (t)···Cn− 1 (t)∣
∣
n=(−1)
n− 1∣
∣C
1 (t)C 2 (t)···Cn− 1 (t)Cn(t)∣
∣
n=(−1)
n− 1
Fn. (4.12.23)The cofactorsQ
(n)
i 1
,1≤i≤n, are independent ofτ.Q
(n)
11
(t)=E(n)
11
=Gn− 1 ,Q
(n)
n 1
(t)=(−1)n+1∣
∣C
1 (t)C 2 (t)C 3 (t)···Cn− 1 (t)∣
∣
n− 1=(−1)
n+1
Fn− 1 ,Q
(n)
1 n
(t, τ)=(−1)n+1∣
∣C
1 (τ)C 2 (t)C 3 (t)···Cn− 1 (t)∣
∣
n− 1.(4.12.24)
Hence,
D
r
τ{Q(n)
1 n(t, t)}=0,^1 ≤r≤n−^2D
n− 1
τ{Q
(n)
1 n
(t, t)}=(−1)n+1∣
∣C
n(t)C 2 (t)C 3 (t)···Cn− 1 (t)∣
∣
n− 1=−
∣
∣
C 2 (t)C 3 (t)···Cn− 1 (t)Cn(t)∣
∣
n− 1=−Gn− 1 ,D
n
τ{Q(n)
1 n
(t, t)}=−Dt(Gn− 1 ),Q
(n)
nn
(t, τ)=Qn− 1 (t, τ),Q
(n)
nn(t, t)=En−^1 ,D
r
τ{Q
(n)
nn
(t, t)}={
0 , 1 ≤r≤n− 2(−1)n
Fn− 1 ,r=n− 1(−1)n
Dt(Fn− 1 ),r=n.(4.12.25)
Q
(n)
1 n, 1 n
(t)=Gn− 2. (4.12.26)Applying the Jacobi identity to the cofactors of the corner elements ofQn,
∣
∣
∣
∣Q
(n)
11
(t) Q(n)
1 n
(t, τ)Q
(n)
n 1
(t) Q(n)
nn(t, τ)∣
∣
∣
∣
=Qn(t, τ)Q(n)
1 n, 1 n
(t),∣
∣
∣
∣
Gn− 1 Q(n)
1 n
(t, τ)(−1)
n+1
Fn− 1 Q(n)
nn(t, τ)∣
∣
∣
∣
=Qn(t, τ)Gn− 2. (4.12.27)The first column of the determinant is independent ofτ, hence, differenti-
atingntimes with respect toτand puttingτ=t,
∣
∣
∣
∣Gn− 1 Dt(Gn− 1 )(−1)
n+1
Fn− 1 (−1)
n
Dt(Fn− 1 )∣
∣
∣
∣
=(−1)
n+1
FnGn− 2 ,Gn− 1 Dt(Fn− 1 )−Fn− 1 Dt(Gn− 1 )=−FnGn− 2 ,Dt[
Gn− 1Fn− 1]
=
FnGn− 2F
2
n− 1