4.12 Hankelians 5 161From (4.12.28) and (4.12.33),
xu′
n− 1=
(
Gn− 1Fn− 1) 2 (
FnGn)(
Gn− 2Gn− 1)(
GnGn− 1)
,
unu
′
n− 1u
2
n− 1=
(1−xn− 1
)(1−xn+1
)x(1−x
n
)
2[
vnvn+1]
. (4.12.35)
From (4.12.16),
(
Fn− 1Gn− 1) 2
=
En− 1Gn− 1−
(
EnGn− 1)(
Gn− 2Gn− 1)
=
(
En− 1En)(
EnGn− 1)[
1 −
(
EnEn− 1)(
Gn− 2Gn− 1)]
1
u
2
n− 1=vn(
xn1 −x
n)[
1 −
x(1−xn− 1
)1 −x
n]
=
x
n
(1−x)(1−x
n
)
2vn.Replacingnbyn+1,
1
u
2
n=
xn+1
(1−x)(1−x
n+1
)
2vn+1. (4.12.36)Hence,
(
unun− 1) 2
=
1
x(
1 −xn+11 −xn) 2 [
vnvn+1]
. (4.12.37)
Eliminatingvn/vn+1from (4.12.35) yields the differential–difference equa-
tion
un=(
1 −xn+11 −x
n− 1)
u′
n− 1. (4.12.38)Evaluatingunas defined by (4.12.33) for small values ofn, it is found that
u 1 =1!(1−x2
)(1−x)
2,u 2 =2!(1−x3
)(1−x)
3,u 3 =3!(1−x4
)(1−x)
4. (4.12.39)
The solution which satifies (4.12.38) and (4.12.39) is
un=GnFn=
n!(1−x
n+1
)(1−x)
n+1. (4.12.40)
From (4.12.36),
vn=En− 1En=
(1−x)2 n− 1(n−1)!
2
x
n,
which yields the difference equation
En=(n−1)!2
xn(1−x)
2 n− 1En− 1. (4.12.41)